时间已至深夜,陈舟却仍旧沉浸在自己的研究之中。
此时的陈舟,又再一次回到了,中微子振荡概率的公式推导上来。
“一般来说,考虑到中微子的平均动量p>>m1,m2……”
“再结合中微子束的平均能量E,中微子产生点与探测点之间的距离l,以及振荡长度L的话……”
“就可以得到中微子束能量之间的关系式,即(E1-E2)t≈(m12-m22)t/2p=Δm2t/2p=1/2Δm2l/E=2πl/L……”
陈舟想也没想,就在草稿纸上,写出了这个关系式。
这是他今晚的第二次推导。
写完这个关系式之后,陈舟扫了一眼,便将这个关系式,代入了Vμ的概率大小P(Ve→Vμ,t)的公式。
草稿纸上,公式的推导,也继续进行到了下一步。
【代入Vμ的概率大小P(Ve→Vμ,t)后,就会有P(Ve→Vμ,t)=1/2sin22θ[1-cos(2.54Δm2l/E)]=sin22θsin2(1.27Δm2l/E)】
【因此,P(Ve→Ve,t)=1-sin22θsin2(1.27Δm2l/E)……】
这个关系式的成立,实际上,便是建立在中微子振荡现象上。
关系式也表明了,一束纯电子中微子,通过一定距离后,一部分将转化为μ子中微子。
而条件便是θ和Δm2不为零。
只要这两个参数不为零,那么不同味道的中微子,就可以相互转化,产生中微子振荡现象。
同时,这一点也说明了,如果实验室上证实中微子振荡的存在。
就可推得,至少有一类中微子,质量不为零。
当然,陈舟现在并没有过多的思考,有关于中微子质量和中微子振荡的问题。
或者说,他现在的关注点,已经从中微子振荡,跑