而平台上的加热温度,也在稳步上升之中。
500摄氏度……
800摄氏度……
1200摄氏度……
可钢板并没有出现融化的迹象。
直到温度被提升到3736摄氏度,钢板才出现微微变形,但仍然没有熔化。
然后温度再次被提升到5122摄氏度,此时钢板终于熔化了,但融化得并不彻底,还有一部分呈现出团块状态,宛如粘稠的岩浆一般。
最后温度达到了5506摄氏度,钢液才宛如沸腾的开水一般。
助手拿着生物平板,记录下这一系列实验数据。
接下来是500摄氏度、1000摄氏度、1500摄氏度、2000摄氏度重复加热和冷却实验。
而且还分为全体加热、单面加热、局部加热的对照组。
这种合金就是生物纳米钼锰钢。
然而这种材料还不是极限耐高温材料,真正的耐高温材料还要看陶瓷基复合材料。
这方面,李青叶也通过生物合成法在搞了。
通过添加一部分碳和钼、钛,形成的生物纳米陶瓷序列之中,目前有一部分品种可以生长出熔点5637摄氏度、沸点5912摄氏度的生物纳米陶瓷。
为什么李青叶那么注重材料的研发?
原因就在于智人公司的精密加工技术非常落后,别说追赶欧美了,就算是和华国企业比,都是没有可比性。
拿着上个世纪的加工技术和加工设备,哪怕是超算和工程师再厉害,也是巧妇难为无米之炊。
因此材料就成为了弯道超车的唯一选择了。
只要材料足够好,完全可以玩力大砖飞的那一套。
发动机不够好是吧?
直接上超高温爆燃。
精度不行?
那就硬度和强度来补偿。
设计落后?
材料硬堆。
这就好比厨师做菜,对方厨艺非常厉害,可以化腐朽