又是很多研究不能绕开的问题,所以数值法求解的运用非常广泛。
同时,数值法求解偏微分方程,也成为计算数学研究研究的一个大类。
张硕花了十几分钟做了初步运算,得出了解的大致区间,但对结果还是不太满意。
“区间太大了……”
他忽然想到了科研辅助系统,决定使用系统功能试了一下。
建立任务——
【任务一】
【研究项目名称:求偏微分方程组的近似解区间(难度评估:F)。】
(任务可提升至C级。)
【进度: />
(任务可取消,目前,取消任务需要科研币数量:0。)
(剩余进度需要科研币数量:1。)
“任务可提升至C级?”
张硕盯着信息中的一行字,仔细想了一下就明白过来。
他打算用数值法对方程组进行求解,要求也只是缩小解的区间范围,只要耐下心进行研究,花费时间也能得出结果。
所以,难度只有最低的‘F’级别。
偏微分方程组的求解也可以变得非常难,比如,要求给出几组特解或者最小化解的区间,又或者对所有可能的解进行详细分析,等等。
这样对应的难度就会呈现指数级别递增。
C级,可能还是因为方程组中,有两个比较简单的方程。
偏微分方程领域中,最著名的纳维-斯托克斯方程(NS方程),可是数学领域的千禧七大世界难题之一。
张硕当然不会提升难度,工作要求也只是给出解的大致范围就可以。
他考虑了一下,决定使用科研币。
【科研币-1】
系统提示的下一刻,张硕就感觉头脑变得清晰,思维变得灵活,解析思路都变得很顺畅。
“这种强化……”
“对研究太有帮助了!”
他马上沉浸在解题中。
对张硕来说,复杂